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The circular dichroic properties of the ligand field bands in transition metal complexes are examined within the frame- 
work of the one-electron theory of optical activity. Special emphasis is placed on the sector rules which can be used to cor- 
relate the stereochemical features of the metal complexes with the circular dichroism spectra associated with their ligand field 
transitions. The zeroth-order 
basis states in the perturbation expansion are assumed to be eigenstates of either an octahedral (Oh) or tetragonal ( D 4 h )  

ligand field Hamiltonian operator. The sector rules, therefore, are applicable to dissymmetric complexes which have 
“nearly” Dah or oh symmetry. 

Expressions for the rotatory strength are developed to second order in perturbation theory. 

I. Introduction 
Sector or regional rules, which relate the signs of the 

observed Cotton effects and circular dichroism (CD) 
bands to specific structural features in optically active 
systems, have played an essential role in the use of 
optical rotatory dispersion (ORD) and CD for eluci- 
dating the stereochemistry of organic compounds. 
These rules have been most successfully applied to the 
CD spectrum associated with the n + r* transition in 
the carbonyl chromophore of organic ketones and 
aldehydes.* Their applications to the CD spectra of 
other transitions in the carbonyl group and to other 
chromophores of organic systems have been extensively 
studied but with considerably less success than was 
achieved in the a + r* carbonyl case. The primary 
limitation to their utility is that the transitions re- 
sponsible for the observed CD bands must be well 
characterized with respect to their electronic origins 
and symmetries. Por example, the 300-nm band in 
the absorption and CD spectra of carbonyl compounds 
is known to be an n + r* transition localized in the 
carbonyl chromophore which is magnetic dipole allowed 
and electric dipole forbidden with respect to the Cz, 
local symmetry of the carbonyl group. The electronic 
transitions in most other organic chromophores are less 
well characterized and unambiguous applications ,of 
sector rules are somewhat more diffiplt. Sector rules 
are based on theoretical models which assume some a 
priori knowledge about the electronic distributions in 
the ground and excited states involved in the absorp- 
tion processes giving rise to circular d ichro i~m.~ In the 
absence of accurate electronic wave functions or with- 
out a detailed characterization of the electronic absorp- 
tion spectrum of an optically active system, this knowl- 
edge does not exist and sector rules are of little use. 

Sector rules for making correlations between the CD 
spectra and structural features of optically active 
transition metal complexes have been of particular in- 
terest to inorganic cheniists in recent years4-I3 The 
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ligand field (d -+ d) transitions in these systems are of 
special interest for developing viable theoretical models 
of optical activity because (a) their absorption bands 
lie in the experimentally accessible near-infrared, 
visible, and near-ultraviolet regions of the spectrum, 
(b) they are localized in a group with high inherent 
symmetry, and (c) their optical absorption properties 
indicate that they are only weakly influenced by the 
ligand environment beyond the ML, cluster (M = 
metal atom, L = ligating atoms). Furthermore, the 
ligand field bands are, in general, well separated from 
those which arise from charge-transfer processes and 
intraligand transitions in complex ions of the first 
transition series. In most systems of interest, the 
extinction coefficients for the d 3 d bands are usually 
<lo0 and seldom >400. Furthermore, they gain most 
of their intensity by the Herzberg-Teller vibronic 
mechanism and only 5 or lo%, in most instances, from 
static ungerade components of the ligand field. These 
results suggest that  the “effective” symmetry of the 
ML, chromophore deviates only slightly from octa- 
hedral oh (n = 6) or tetragonal D4h (n = 4) in most 
systems of interest here. If we accept this to be the 
case, then in any quantum mechanical description of 
the overall complex we can represent interactions be- 
tween the ML, cluster and other parts (nonligating) of 
the complex as small perturbation terms in the total 
Hamiltonian of the system. Additionally, small dis- 
tortions of the ML, cluster from strict 0, or Ddh sym- 
metry can be treated as perturbations. 

It would appear that  in transition metal eomplexes 
all the conditions necessary for deriving a set of sector 
rules for the d + d CD spectra are satisfied. These 
conditions ate (a) a set of transitions whose electronic 
origins are well characterized and whose intensity- 
gaining mechanism is identified, (b) chromophoric 
groups that have well-defined “effective” symmetries, 
and (c) weak interactions between the chromophoric 
group and the ligand environment. There are, how- 
ever, several complications in these systems which 
make the development of simple sector rules somewhat 
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difficult. In high-symmetry environments (cg., 0, or 
0 4 , ) )  many of the excited states and, in some cases, the 
ground state of the d" electronic configurations in 
transition metal ions are orbitally degenerate. These 
orbital degeneracies make the system subject to Jahn- 
Teller distortions. The orbital triplets occurring in a 
MLB octahedral cluster can couple to a t z n  vibrational 
mode or an e, vibrational mode or to both the tlg and eg 
vibrational modes simultaneously. The orbital dou- 
blets in MLo can only couple to the eg vibrational mode 
to produce a Jahn-Teller distortion. In a tetragonal 
ML4 cluster, both Jahn-Teller distortions (in the orbital 
doublet states) and pseudo Jahn-Teller interactions (in- 
teractions between two nearly degenerate states) are 
likely to occur. In the discussion that follows, we shall 
ignore these vibronic interactions. Our justification for 
neglecting them is twofold: (a) we are primarily in- 
terested in the total or net CD associated with a par- 
ticular transition and not in the detailed band shapes or 
vibrational structure in the CD spectra; (b) the per- 
turbations arising from the low-symmetry components 
of the ligand fields are likely to be stronger than any 
Jahn-Teller interactions in the systems of interest. A 
detailed account of how vibronic interactions can in- 
fluence the CD spectra of metal complexes will be given 
e1se~here. l~ Their neglect has no effect on the results 
presented in the present study. 

11. Theory 
Detailed theoretical studies of sector rules for 

pseudotetragonal and for trigonal dihedral metal com- 
plexes have recently been reported.I5,I6 In these 
studies i t  was concluded that sector rules based on the 
static one-electron model of optical activity are iden- 
tical with those derived from the dynamic electric 
dipole-magnetic dipole coupled oscillator model. In 
this paper we adopt a static one-electron model in 
which the chromophoric electron is localized on the 
metal atom. The dynamical behavior of this electron 
is determined to zeroth order by the total potential 
field of the undistorted ML, cluster and to higher orders 
by the potential field of the nonligating parts of the 
complex and by static distortions (nonvibronic) within 
the ML, cluster. Spin -orbit interactions are neglected 
in our model. 

The ligands in the systems of interest here are either 
bidentate or tridentate, and the nonligating environ- 
ment can, therefore, be separated into chelate ring 
atoms (bridging atoms) and ring substituent groups or 
atoms. We shall designate the ring perturber sites by 
t and the substituent perturber sites by s. The total 
Hamiltonian for the complex is partitioned as 

where Ho is the Hamiltonian for an isolated, undis- 
torted ML, cluster of Oh or D4, symmetry; Ht and H,  
are the Hamiltonians for the isolated t and s groups, 
respectively; Vt and Vs are interaction potentials be- 
tween the metal chromophore and the t and s groups, 
respectively; Vt, is an interaction between the t and s 
groups; and VI, represents a distortion potential in the 
ML, cluster due to any distortions of the ML, frame- 
work from 0, or Dqh symmetry. The total Hamiltonian 
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which determines the behavior of the chromophoric d 
electrons on the metal atom is given by 

H ,  = Ho + v, + v, + VL (2) 

Ho is taken as our zeroth-order Hamiltonian and V,, V,, 
and V L  are treated as small perturbations. We shall 
represent the gerade eigenstates of HO by F,, and the 
ungerade eigenstates by FuI. 

Suppose that we are interested in calculating the 
rotatory strength of the transition Fgo -+ F,,. If this 
transition is magnetic dipole allowed, then the first- 
order rotatory strength is expressed on the one-electron 
model as 

R'OJ = Im[ ~ ( F g o ~ ~ ~ ~ u , ) . ( ~ g ~ ~ ~ ~ ~ g o ) ( ~ u , ~ ~ ~ F g ~ ) I  

AEl?  + c ~ ~ u 5 l ~ l ~ , 1 ~ ~ ~ ~ , ~ l ~ l ~ , o ~ ~ ~ u , /  V I F ~ W O , ]  (3) 

where is the electric dipole moment operator, Gi is the 
magnetic dipole moment operator, AE1, and AEol are 
the energy differences between the FuJ state and the 
Fgl and Fgo states, respectively, and 

V = CVt + cvs + VL (4) 
S 

In order for the electric dipole and magnetic dipole 
transition moments in (3) to have parallel components 
(ie., to ensure that their scalar product is nonvanishing) 
the direct product of their irreducible representations 
in the group of Ho must contain the pseudoscalar irre- 
ducible representation rps. That is, rM.rrn must in- 
clude rP6. In order for the first term of (3) to be non- 
vanishing i t  is further required that ral. TU5 = rPs and 
that rV = rps. In order for the second term in (3) to 
be nonvanishing, i t  is necessary that Fgo a rU, = rPs and 
that rv = rps. 

If we assume that the undistorted ML, cluster has 
D41 symmetry, then I'V = rps = AI, of the D4, point 
group. Now i t  is necessary to find the components of 
V that transform as AI, under the symmetry operations 
of the D4, point group. If we express each potential 
energy function in (4) as an expansion in spherical 
harmonic functions about an origin located a t  the metal 
atom, then the first terms in the expansions that trans- 
form as AI, in D4, are given by 

V' = 75CKtXtYtzt(Xt2 - Y?)/Rt'l + 
t 

rjCKsXs Y,Z,(X,Z - Y , ~ ) / R ~ ' ~  + 
S 

~ ~ C K X L Y L Z L ( X L Z  - yL2)/RL1' ( 5 )  

where r is the radial coordinate of the chromophoric 
electron; Kt ,  K,, and K L  are functions of the electron 
angular coordinates and of the static charge distribu- 
tions on the perturber sites; Xt,  Yt, and Zt are the 
Cartesian positional coordinates of the tth perturber site 
in a coordinate system whose origin is a t  the metal atom, 
and Xt is the radial distance between the tth site and 
the metal atom. The sum ZI, is taken over all ligating 
atoms which are distorted from the tetragonal geom- 
etry. 

Equation 5 is an expression of the hexadecant rule 
which has been applied to the CD spectra of pseudo- 
tetragonal complexes by several workers. 4-13,15 The 
functions of electron angular coordinates in V' can be 

L 
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expressed in terms of the spherical harmonics, 2-’ / ’ .  
( Y5-4 - YE4). Since the basis states F,o and Fgl are 
constructed from d orbitals ( I  = 2)  and the perturba- 
tion operator V’ is a function of ( Y s - ~  - Y54), i t  is clear 
that  the mixed-in states Fuj must be constructed from 
basis orbitals with 1 >/ 3. In order for the matrix 
elements (Fuji V’lFgl} and (Fuji V’IF,o} to be non- 
vanishing, Z(Fuj) + I(F,1) 3 Z( V’) and Z(Fuj) + I(F,O) >/ 
l(V’), respectively. This means that V’ cannot pro- 
mote d-p mixing in the metal chromophore, but i t  can 
promote d-f mixing. 

If we assume that the undistorted ML, cluster has 
octahedral symmetry, then rV = rPs = A1, of the 
octahedral point group. In this case if we expand V 
in a spherical harmonic basis about the metal atom, the 
first term to transform as AI, in Oh has 1 = 9. The 
mixed-in oribtals must now be of the order 1 3 7. At 
this point, our model carried to first order becomes 
absurd. It is necessary, therefore, to carry our per- 
turbation treatment to second order. l7 

We approximate the eigenstates of H, by expanding 
them in a perturbation series in which the eigenstates 
of HO form the expansion basis set and Vis  the perturba- 
tion operator. If we take this perturbation treatment 
to second order in the wave functions, then both the 
electric and magnetic dipole transition moments can be 
obtained to second order. Furthermore, the rotatory 
strength can be obtained to second order completely. 
Third- and fourth-order terms for the rotatory strength 
can also be obtained but these are incomplete unless 
the wave functions are developed up to  fourth order. 
The second-order contributions to the rotatory 

P and M are, respectively, the electric and magnetic 
dipole transition moments between the basis states 
(F,,, Fuj); Vu and V, are, respectively, the ungerade 
and gerade components of the potential energy function 
V ,  and the perturbation matrix elements are defined 
according to the following examples: V,ol = (Fgol V,( 
Fgi )  and Vue, = ( F &  VulFuj). Terms 6a-d are obtained 
from the products between first-order electric dipole 
and first-order magnetic dipole transition moments. 
Terms 6e-j result from products between second-order 
electric dipole transition moments and the zeroth-order 
magnetic dipole transition moment. Terms 6,-f are 
obtained with first-order wave functions, and terms 
6g-j require second-order wave functions. 

If the summations in eq 6 are taken over a complete 
(17) Schellmana was the first to suggest the possible necessity of de- 

veloping the one-electron model t o  a higher order of Perturbation theory 
when deriving sector rules for “high-symmetry’’ systems. 

set of states (i, j) , then the vanishing or nonvanishing 
nature of each term in (6) can be determined by a simple 
“selection rule” derived from the symmetry properties 
of the operators G, 6, V,, and Vu. The “selection rule” 
is I’( Vu). I?( V,) = rPs. The direct product between 
the irreducible representations of Vu and V, in the point 
group of HO must include the pseudoscalar representa- 
tion of this group. The general proof for this selection 
rule will not be given here. One is referred to ref 15 
€or this proof. The group theoretical basis for the 
selection rule can be most easily demonstrated by con- 
sideration of (sa). First, we know that ro.I’,.I’, = 
ria r,. ro = rP8 (totally symmetric representation) 
must be satisfied to ensure that the integrals Poj and 
Mio not vanish on symmetry grounds. Second, in 
order that  the scalar product Poj.Mto not vanish, 
I?p-I’m = rps. It follows, therefore, that  I’,.rr = rPs. 
For the perturbation matrix elements we require that 
rj~rl.r(Vu) = I’t*I?l-I’(Vg) = rts and rj.ra = rps. 
It follows that I?( Vu) .I?( V,) = rPs. We now have a 
“selection rule” from which second-order sector rules 
can be derived. 

First we shall consider an undistorted ML, cluster 
with Ddh symmetry. We expand both Vg and vu in 
terms of the normalized tesseral harmonic functions (as 
defined by PratheP)  and retain only those terms in the 
expansion for which 1 6 5 .  The potential energy 
function V ,  expressed in terms of tesseral harmonics, is 
given by 

Slm(xj y ,  z)Szrn(X,, Ya> ~a)IQ~Ra-‘zfl) (7) 
where r is the radial coordinate of the chromophoric 
electron, x ,  y, and z are the Cartesian coordinates of the 
electron, R, is the radial distance between perturber 
site a and the metal atom, and X,, Y,, and 2, are the 
Cartesian coordinates of the perturber site a. The 
summation Z, is taken over all perturber sites a = s, 
t, and L, and Q, is the classical charge assigned to the 
perturber site a, The terms in which 1 = 1, 3, and 5 
belong to Vu, and the terms in which I = 2 and 4 belong 
to V,. The tesseral harmonics, Clm and Slm, which ap- 
pear in Vu and V,  are listed in Table I along with the 
irreducible representation to which they belong in the 
Ddh point group. 

To derive sector rules for the second-order contribu- 
tions to the rotatory strength, we must first identify the 
pair combinations of V,  and Vu for which r( Vu). I’( V,) 
includes rPs These combinations, expressed in terms 
of the tesseral harmonics of Table I, are given in Table 
11. The first ten product functions in Table I1 come 
from (Vu, V,) pair combinations that can cause d-d 
and d-p mixings. The remaining four product functions 
appear in (Vu, V,) combinations which promote d-d 
and d-f mixings. If the product functions in Table I1 
are expressed in terms of the perturber Cartesian co- 
ordinates, the first five products (1-5 in Table 11) have 
an RP5 dependence on the radial distances between 
perturber sites and the metal atom, and the last nine 
products (6-14 in Table 11) have an R-’ dependence on 
perturber radial distances. The Vu - V, products ob- 
(18) J. Prather, “Atomic Energy Levels in Crystals,” National Bureau of 
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ton, D. C., 1961. 
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TABLE I1 
PRODUCTS OF TESSERAL HARMONICS 

TRANSFORMING AS Ai, IN THE Dah POINT GROUP 

4. cz2.s32 11. CZ'.S52 

5 .  s 2 2 .  c3z 12. S22.C62 

6. C 3 2 . S 4 2  13. C~O*SF,~ 
7.  s 3 z .  c 4 2  14. (Czl $- Sz1).(C53 i S53)a 

5 These products contain components which transform as AI,,. 

tained from the first five terms in Table I1 have an R-12 

dependence on R, and the Vu. V, products obtained 
from the remaining nine terms in Table I1 have an R-I6 
dependence on R. Sector rules based on the first five 
products of Table I1 should, therefore, be predominant 
in the second-order contribution to the rotatory 
strength. We shall only consider these sector rules in 
detail here. 

Considering only the first five product functions in 
Table IT, the sector rules for R" are given by 

CCza [xpYj3(Xp2 - YB~) IQaQa 

C C X a  [ Y L J D ( Y P ~  - 26') IQaQp 

( 8 4  

(8b) 

a 1 3  

a 1 3  

a 1 3  

a 1 3  

CC [Za(Xa2 - Yaz) 1x13 YpQaQP 

C C X a Y a z a ( X ~ 2  - Y B )QaQa 

(8f) 

(8g) 

a 1 3  

a B  

where X u  and Z B  are taken over all perturber sites CY and 
p, and (a, p)  = (r, s, L). For those terms in which CY 

= p, the sector rule is hexadecal and the contribbtions 
of the individual perturber sites are obtained separately. 
The terms in which CY Z p lead to "mixed sector rules" 
and, in these cases, the contributions to R" must be 
obtained by considering pairs of perturber sites. AS 
written in terms 8a-g, the CY perturbers produce un- 
gerade perturbations on the D4, ML, cluster and the /3 
perturbers exert gerade perturbations on the undis- 
torted ML, cluster. The interaction potential pro- 
duced by the combined influence of an (CY, p) pair is 
dissymmetric with respect to ML, and can promote 

optical activity. The gerade perturbation potential 
from which the terms in (8) were derived is only effec- 
tive in mixing the d-like oribtals on ML, among them- 
selves. The ungerade perturbation potential which 
leads to the various terms in (8) can only promote mix- 
ing between the d- and p-like orbitals on ML,. It is 
safe to assume that the effects of d-d and d-p mxing 
on the spectral properties of the complex will predom- 
inate over any effects caused by d--s, d-g, d-f , and 
higher order mixings. It is important, however, to 
note that the sector rules presented in (8) were derived 
on a perturbation model in which the expansion of V, 
was truncated after the 1 = 4 term, and the expansion 
of Vu was truncated after the 1 = 5 term. Further- 
more, all second-order terms in which I (  V,) + I (  Vu) > 
5 were dropped. 

The validity of using expressions 8a-g as sector rules 
also depends upon the formal or classical charges which 
are assigned to each of the perturber sites. If Qa and 
Q p  are of like sign for each (CY, (3) pair, then a sector rule 
based only on the positional coordinates of CY and is 
sufficient. In fact, when Qa and QP are of like sign, the 
second-order rotatory strength is completely indepen- 
dent of the signs of the perturbing charges. However, 
when Qa and QP have opposite signs, these signs must be 
incorporated into the sector rules. 

In many six-coordinate, dissymmetric metal com- 
plexes the MLS cluster has a regular octahedral ge- 
ometry. In these cases, the "effective" ligand field in 
which the metal d electrons move is represented by a 
large octahedral (0,) component and a sum of smaller, 
low-symmetry (hemihedric and holohedric) components. 
A perturbation treatment of these systems makes use 
of zeroth-order electronic states which form bases for 
the irreducible representations of 0,. The first term in 
a general spherical harmonic expansion of the ligand field 
potential function which transforms as AIu in 0, (the 
pseudoscalar representation in 0,) is of order 1 -- 9 
The sector rule which applies to this potential function 
is X Y Z ( X z  - Y z ) ( Z z  - Y 2 ) ( Z z  - X z ) .  This rule has 
been successfully applied to the stereochemical inter- 
pretation of CD spectra for several dissymmetrically 
distorted cubic (0,) systems1g and should, in principle, 
be applicable to the signs of CD bands associated with 
transitions in any essentially octahedral chromophore. 
However, if one's objective is to relate the observed CD 
spectra to the orbital descriptions of the responsible 
electronic transitions, then a dissymmetric perturba- 
tion potential with 1 = 9 dependence is of little use. 

If the perturbation model for the zeroth-order octa- 
hedral system is carried to second order (in the wave 
functions) and three-way interactions are admitted 
(two different perturber groups and the chromophore), 
then products of perturbing potentials which have 
Z(odd) 2 3 and Z(even) 2 2 dependence are effective in 
producing nonvanishing rotatory strengths in the d --t d 
ligand field transitions. In this second-order represen- 
tation therefore, the orbital description of the optical 
rotatory properties can be given in terms of an S, p, d,  
and f atomic orbital basis set centered on the central 
metal ion. This description allows maximum use of 
the powerful concepts of crystal field and ligand field 
theories in interpreting the CD spectra in terms of other 
spectroscopic properties of the ligand field transitions. 

(19) B. Bosnich, private communication 



TRANSITION METAL COMPLEXES 

(dal 
(dbi 
(de[ 
(de7 
(dbz 

Inorganic Chemistry, VoZ. 10, No. 10, 1971 2125 

0 0 +(31/z)i - ( 3 ' 4 j  0 
0 0 +i +.i -2k 
-(3'/2)i -i 0 + k  -.i 
+(3'/2)j - j  - k  0 + i  
0 +2k +j -i 0 

Using procedures similar to those applied in the D413 
ML, case, a set of sector rules for R'laet in dissymmetri- 
cally distorted octahedral systems can be derived. The 
six lowest order terms in this case are identical with 
those given in (8a)-(8f). Term 8g does not apply 
since the direct product F(X YZ) r (X2 - Yz) trans- 
forms as E, in oh. The following are the next higher 
order terms which apply to  the distorted oh case 

[XaYaZa(Xaz - Yaz)(3Zpz - Rs2)1QaQp ( 9 4  
a @  

CC [Xa YaZa(3za2 - Ra2)(Xg2 - Ypz) lQaQp 
a @  

CC [Xa(Ya2 - Zaz) YpZp(7Xpz - RoZ) IQeQp 

(9b) 

( 9 ~ )  
a s  

(dal 
(dbt 
(de€ 
@et, 
(dbz 

where the perturbers a provide an ungerade distortion 
(Vu) and the /3 perturbers provide a gerade distortion 
(V,). The perturbation terms from which (9a)-(9h) 
were derived can mix s, p, d, and f metal orbitals, 
whereas those from which (8a)-(Sg) were derived can 
only mix s, p, and d metal orbitals. Only when the 
true symmetry of the total system is Cl (;.e., asym- 
metric), will all the expressions (Sa)-(Sf) and (9a)-(9h) 
apply. For example, if the true symmetry of the com- 
plex is CZ and the twofold rotational axis coincides with 
the octahedral CZ (2) axis, then only (Sa), (8f), (9a), 
(9b), (ge), and (9f) have both gerade and ungerade 
components which transform as the A irreducible 
representation in the C2 point group. 

111. First- and Second-Order Contributions 
to CD Spectrum 

In this section the general theory developed in section 
I1 is used to assess the qualitative features of the CD 
spectra associated with the ligand field (d -+ d) transi- 
tions of optically active complexes with a tetragonal 
(Ddh) ML, cluster. Primary attention is given to how 
the sector rules derived in section I1 can be used to  
interpret the CD spectra in terms of specific structural 
features of the metal complexes. 

A. First Order.-The d --+ d transitions are mag- 
netic dipole allowed and electric dipole forbidden, 
and their rotatory strengths can be obtained to first 
order in perturbation theory from eq 3. If we repre- 
sent the perturbation potential by V' (eq 5), then the 
orbital basis set for the ungerade functions F,, must 
include a t  least f orbitals. As was pointed out in 
section 11, V' will not mix d and p orbitals. In  the 
first-order treatment, we shall construct the functions 
Fgt from a d-orbital basis and the functions F,, from an 
f-orbital basis. To  evaluate the R'i , l~ matrix for the 
complete manifold of i -+ i' (d ---t d) transitions, we 
need the magnetic transition dipole matrix Ml,{t, the 
electric transition dipole matrix PI,,, and the perturba- 
tion matrix V'*,$. The one-electron basis functions 

0 0 0 0 0  0 0 
-1 0 0 0 0  0 0 

0 - (6/12)"2 0 0 +1 /2  0 0 
0 0 + (&/Id  1 1 2  0 0 +'/2 0 
0 0 0 0 0  0 -1 

€1 
82 

€8 { 
dbi) 
dbz) 

f e d  ::si, 
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The first-order rotatory strength matrix for d 4 d 
transitions is given in Table VI. The elements of the 
matrix are expressed in terms of 6 (Bohr magneton), 
qfd,  v'fd, and the four energy differences €1, €2, €3, and e4. 

If we assume that the strongest parts of the ligand 
field originate with the ligating atoms L and if these 
atoms are located on the x, y, and z axes of the system, 
then the relative magnitudes of the energy differences 
€k are given by:  €4 > €3 > € 2  > el. In general, the 
energy interval between the d- and f-orbital manifolds 
is much larger than the energy splittings within the two 
manifolds. For this reason, i t  is a good approximation 
in any crude analysis to set €1 = E Z  = e3 = €4 = Edf, 
where Bdf is the difference between the mean energies of 
the d- and f-orbital manifolds. Using this approxima- 
tion, we see from Table VI that the total rotatory 
strength associated with all one-electron excitations to 
Idbl) is zero. Similarly, the rotatory strength as- 
sociated with one-electron excitations to [ dal) is zero. 
For example, if we consider a Cu(I1) complex in which 
the only unoccupied d orbital in the ground state is 
ldbl) and in which the splitting between \der) and )de.$) 
is very small, then to first order in I/' the CD spectrum 
due to ligand field transitions should exhibit two bands 
which are nearly equal in magnitude but which have 
opposite signs. The one band is associated with the 
dbz -+ dbl transition and has a rotatory strength ap- 
proximately equal to 4pqdfz)'dfEdf. The second band 
arises from the two transitions de[ -+ dbl and der --t 
dbl and has a rotatory strength approximately equal to 
-4PqdfV'dfEdf. In order that  the net rotatory strength 
of the overall d +- d spectrum not vanish to first order 
in V', the energy splittings within the d- and f-orbital 
manifolds must be included explicitly. If we consider 
these splittings, the net first-order rotatory strength is 
given by ~ / z ( ~ E Z - ~  - 3e4-' - ES-')&dfv'df for the 
Cu(II) complex. 

So far i t  has been assumed that the deq and de( 
orbitals are sufficiently close in energy that their in- 
dividual CD components cannot be resolved. If the 
energy difference between these orbitals is >500 cm-l, 
i t  becomes questionable whether a perturbation model, 
in which a tetragonal (D4h) ML, cluster is assumed to 
zeroth order, is valid, In this case, a rhombic or ortho- 
rhombic zeroth-order representation of ML, is to be 
preferred. The intermediate case in which the splitting 
is between 0 and 500 cm-' is of special interest in the 
interpretation of CD data since, in this case, the iso- 
tropic absorption spectrum should show no evidence of 
the splitting, whereas the CD spectrum can show two 
overlapping but resolvable bands. 

The deq and de[ functions are the orbital components 
of a doubly degenerate tetragonal state belonging to the 
E, irreducible representation. From the group theoret- 
ical analysis given in section I1 i t  was deduced that, to 
first-order in perturbation theory, the optical activity 

associated with any transition between tetragonal states 
is zero unless a perturbation potential transforming as 
AI, (in Ddh) is present. Note that this result applies 
only to transitions between perturbed tetragonal states. 
In the case of the E, state, i t  applies to the combinations 
of one-electron transitions to or from the der and de[ 
orbitals. If the E, state is split, it is necessary to 
evaluate the rotatory strengths of the individual de7 
and de[ orbital components which are induced by the 
ungerade parts of V which are of lower order than 
V'(Z = 5 ) .  Both the V(Z = 1) and V(1 = 3) parts of 
the total ligand field potential will mix the der and de[ 
orbitals with pex, pey, and pez orbitals to first order in 
perturbation theory. Furthermore, these d-p mixings 
lead to induced rotatory strengths for one-electron 
transitions to der and de[ which are equal in magnitude 
but opposite in sign. Since the average energy differ- 
ence, Edp, between the d and p orbitals is somewhat 
smaller than Edf, these rotatory strengths will be larger 
than those due to d-f mixing (;.e., those given in Table 
VI) by a t  least a factor of cdp/edf. The net rotatory 
strength associated with transitions to the E, state is 
still given by the sum of the deq and de[ rotatory 
strengths given in Table VI. However, when the 
splitting between these components is resolvable in the 
CD spectrum, i t  is possible that two distinct bands of 
opposite signs and unequal magnitudes will be observed. 
The qualitative features of the component CD bands 
due to transitions to the E, state are depicted in Figure 
1. For very small splittings, of course, only one band 
should be observed and its intensity is derived solely 
from d-f mixing to first order. 

Second Order.-To obtain complete expres- 
sions for the second-order contributions to the rotatory 
strength of each d .--t d transition, each term in eq 6 
must be evaluated. The resulting expressions are long 
and complex even on a quasi crystal field model and are 
of limited value for interpreting the experimental CD 
spectra, A more practical approach for making use of 
the second-order rotatory strengths is to determine how 
they influence the overall (net) rotatory strength as- 
sociated with all d -+ d transitions. The signs and 
relative magnitudes of the rotatory strengths associated 
with the individual d + d transitions depend upon the 
ordering of d-orbital energies as well as upon the stereo- 
chemical properties of the complex. The sign and 
magnitude of the net rotatory strength also depends 
upon the relative energies of the d orbitals; however, 
for this quantity the analysis can be conveniently 
broken down into two separate cases: (1) the weak 
tetragonal field case; ( 2 )  the strong tetragonal field 
case. In the first case, i t  is assumed that A. (octahedral 
crystal field splitting energy, 1ODq) > At (tetragonal 
crystal field splitting energy). In the second case, i t  is 
assumed that A,, < Ab. Only the weak tetragonal field 
case will be considered in the following discussion. 

B. 
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a. 

L. 

Figure 1.-Features of the CD bands associated with transi- 
tions to  the split orbital components of the tetragonal E, state: 
(a) first-order contributions due to  d-p mixing; V(Z = 1, 3);  
(b) first-order contributions due to d-f mixing, V(l = 5);  (c) 
sum of first-order contributions. 

The net second-order rotatory strength associated 
with all d -+ d transitions is given by Rllnet = 2iR”~,t, 
where 8% is taken over all the one-electron d + d transi- 
tions and R”o,i is given by eq 6. Complete evaluation 
of eq 6 is unmanageable because of the many unknown 
intermediate states Fuj with odd parity. The main 
contributions will, however, come from the ungerade 
states in which one of the five 3d orbitals is promoted to 
a 4p orbital owing to the large overlap of the wave 
functions. It is, therefore, a good approximation to 
replace the energy differences AE$j by the mean energy 
separation between the 3d and 4p orbital manifolds and 
then sum over the ungerade intermediate states using 
the closure properties of the Fur eigenfunctions. Sum- 
ming over the complete set of FUj states and applying 
the average energy approximation and closure theorem, 
we obtain 

where , Z i t  and ,Zt are taken over only the d -.t d excited 
states. If we separate the perturbation operators 
Vu and V, into two parts, those that depend only upon 
the coordinates of the chromophoric electrons and those 
that are independent of these electron coordinates, 
then eq 10 can be rewritten as 

vu and r, are those parts of Vu and V,, respectively, 
which are independent of electron coordinatees, vu and 
v, are the electron-dependent parts of the Vu and V, 
operators, and vgi0 and vgit’ are matrix elements of the 
electronic operator a,. vu and vg, of course, represent 
sums over the nuclear positional coordinates and the 
charges of the perturbing sites. The sector rules which 
govern R”net are derived from vu and v,. 

To derive sector rules for R1Inet, we must identify 
those parts of eq 11 whose signs are sensitive to  the 
stereochemical characteristics of the perturbing ligand 
environment. Certainly the signs of vu and v, are 
dependent upon the geometrical disposition of the atoms 
in the ligand environment. However, the relative 
ordering of the d --t d excited states is also sensitive to 
the geometrical arrangement of the ligands and this 
ordering determines the signs of the energy differences 
AEilt and AEoi, which appear in eq 11. We shall 
restrict our discussion to the class of complex ions in 
which the tetragonal component of the ligand field is 
smaller than the octahedral field and in which the axial 
part of the tetragonal perturbation is smaller than the 
in-plane part ( i e . ,  the complexes are axially elongated 
rather than axially compressed). This class encom- 
passes most of the amino acid, di- and tripeptide, and 
diamino complexes formed by the first-row transition 
metal ions in aqueous solution. Within this class of 
complex ions, the AEoi and AEili quantities will always 
have the same sign and the electronic matrix elements 
in eq 11 will, of course, always have the same signs. 
Sector rules for R1Inet can, therefore, be completely 
based on vu and v,. 

In the optically active complexes of the second-row 
Pd(I1) and third-row Pt(I1) transition metal ions, the 
tetragonal component of the ligand field is, in many 
cases, comparable in magnitude to the octahedral 
splitting energy. In these cases, eq 11 cannot be used 
without explicit information about the relative energies 
of the d -+ d excited states. 

The sector rules based on vu and pg in (11) are given 
by the seven expressions (8a)-(8g). That  is, the sign 
dependence of R’lnet on the positional coordinates and 
charges of the perturbing ligand groups is determined 
by the signs and relative magnitudes of (8a)-(8g). 

IV. Discussion 
In the theoretical analyses presented in sections I1 

and I11 i t  was assumed that the spectroscopic states in- 
volved in the ligand field transitions of chiral metal co- 
ordination compounds could be adequately described 
in terms of a quasi crystal field model. That  is, i t  was 
assumed that these states could be described entirely 
in terms of metal atomic orbitals and that the ligand 
environment could be represented by an array of 
“static” charge distributions. Differential overlap be- 
tween the metal and ligand electron orbitals was ne- 
glected and the dynamical behavior of the electronic 
distributions on the ligands was ignored. These as- 
sumptions are within the spirit of the “one-electron” 
theory of optical activity and the ligand field theory of 
d +. d transitions in transition metal complexes. They 
cannot support a quantitative analysis of the optical 
rotatory properties of the ligand field bands, but, on 
the other hand, they should provide a valid and reliable 
basis for analyzing the symmetry-controlled, qualita- 
tive aspects of these properties. The recent use of 
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sector rules in correlating the signs of the ligand field 
CD bands with stereochemical features of the ligand 
environment in transition metal compounds4-13 has 
been entirely based on the general concepts of the “one- 
electron” model of optical rotatory power.3 This 
latter fact makes necessary a more detailed scrutiny 
of the quantum mechanical basis for sector rules in 
transition metal complexes treated on a crystal field 
model. The theory presented in sections I1 and I11 
provides the basis for such a study. 

The crystal field one-electron model is most appropri- 
ately applied to the ligand field CD spectra of metal 
complexes in which the ligands exhibit no strong ab- 
sorption bands in the spectral region X >200 nm (e.g., 
diamines with saturated hydrocarbon bridging and sub- 
stituent groups). In these cases the dynamical be- 
havior of the ligand electron distributions probably 
have little influence on the d -+ d spectroscopic states. 
For metal complexes in which the ligands are amino 
acids, di- or tripeptides, or oxalate anions, i t  is likely 
that the one-electron model provides an incomplete 
description of the optical rotatory properties of the 
ligand field transitions. In these cases, there are elec- 
tronic transitions localized in the ligand chromophoric 
groups which occur at wavelengths >200 nm and which 
have moderately larke electronic transition dipoles. 
Under these conditions i t  is expected that dynamical 
coupling between the magnetic transition dipoles as- 
sociated with the metal d -+ d transitions and the elec- 
tric transition dipoles associated with the chiral ligand 
environment will provide an additional mechanism for 
optical activity. However, in a previous theoretical 
study16 i t  was shown that the electric-magnetic coupled 
oscillator mechanism and the one-electron mechanism 
should lead to identical sector rules with respect to the 
stereochemical arrangement of the ligands about the 
metal atom. The sector rules given in section 11, 
therefore, should be applicable to the class of ligands 
which includes amino acids, di- and tripeptides, and 
oxalate anions. 

Examples of mixed-sector rules for various types of 
pseudotetragonal transition metal complexes are given 
in the Appendix. In each case i t  is assumed that the 
o-bond structure of the MLsZ:! cluster has tetragonal 
(D4h) symmetry and that the spectroscopic states re- 
sponsible for the ligand field spectra can be described to 
zeroth-order as eigenstates of a Hamiltonian which has 
Ddh symmetry. The perturbed spectroscopic states are 
sensitive to (a) dissimilarities between the four in-plane 
ligating atoms due, for example, to their varying abilities 
to form a bonds with the metal atom, (b) the presence of 
the bridging atoms in the chelate rings, and (c) the pres- 
ence of substituents attached to the ligating or bridging 
groups. In other words, to zeroth order we partition each 
complex into four independent subsystems : the ML4Z2 
o-bond structure, the metal-ligator a-bond structure, 
the bridging atoms, and the substituent groups. The 
mixed-sector rules originate with the three-way inter- 
actions which occur between the ML& chromophoric 
electrons and any two of the remaining three subsys- 
tems. For example, in the complex Cu(L-alaninato)z 
we assume to zeroth order that  the CuOzNz cluster has 
full D4* symmetry. Perturbations on this zeroth-order 
representation are then assumed to originate from dis- 
similarities between the 0-  and N ligator atoms, from 

the carbon and carbonyl bridging groups, and from the 
methyl and hydrogen substituents. In this case, the 
ligating atoms provide a rhombic distortion which 
transforms as ( X 2  - Y z )  and the substituents provide a 
distortion which transforms as ( X Y Z ) .  Taken to- 
gether, these distortions provide a dissymmetric po- 
tential in which the metal d electrons must move. The 
hexadecant rule for this compound (based on a first- 
order perturbation treatment of rotatory strength) has 
as its basis a X Y Z ( X z  - Y z )  distortion provided by the 
substituent methyl groups. The potential energy 
function representing the d-electron-substituent inter- 
action in this case has R-I1 dependence on the radial 
distance between the metal atom and the substituent 
group. For the mixed-sector rule (based on a second- 
order treatment of rotatory strength) the potential 
energy expression has R,-7. R,-5 dependence on the 
radial distances R, (substituents-metal) and Rm (liga- 
tors-metal). 

The search for sector rules which are applicable to the 
CD spectra of dissymmetric transition metal complexes 
is closely related to another problem of current interest 
in inorganic CD spectroscopy. This problem arises 
from attempts to correlate the signs and magnitudes of 
the observed CD bands with three general “kinds” of 
stereochemical features in the ligand environment. 
These three “kinds” of stereochemical features are de- 
fined as follows: (1) the geometrical distribution, or con- 
f iguration, of chelate rings about the central metal atom, 
(2) the conformations of the individual chelate rings, and 
(3) the presence of asymmetric centers in the ligand 
environment-asymmetric centers vicinal to the metal 
chromophore. It has been proposed that the CD spec- 
trum associated with the ligand field bands of a transi- 
tion metal complex can be represented as a sum of three 
independent contributions which are attributable to 
these three “kinds” of stereochemical f e a t ~ r e s . ~ O - ~ ~  
The contribution orginating with configurational dis- 
symmetry is called the conjigurational e f ec t ,  the con- 
tribution due to dissymmetry in the chelate rings is 
termed the conformational e fect ,  and the contributions 
attributable to asymmetric centers in the ligands are 
referred to as vicinal e jects .  It has been recognized, 
of course, that the configurational and conformational 
stereochemical features of a complex are, in general, 
interdependent and that they are also influenced by the 
number and structural details of the asymmetric centers 
in the ligands. However, given a particular configura- 
tional isomer of a complex comprised of optically active 
ligands which form chelate rings with prescribed con- 
formations, i t  is assumed possible to separate the ob- 
served CD spectrum into configurational, conforma- 
tional, and vicinal contributions. 

The model presented in section I1 of this paper does 
not explicitly distinguish between the configurational, 
conformational, and vicinal effects. The ligand en- 
vironment is represented as a constellation of nonover- 
lapping charge distributions which are centered on the 
ligand atoms. The chromophoric electrons are assumed 

(20) B. E. Douglas in “Coordination Chemistry,” S. Kirschner, Ed., 

(21) C. T. Liu and B. E. Douglas, I i zorg .  Chem., 3, 1356 (1964). 
(22) B. E. Douglas, ibid., 4, 1813 (1965). 
(23) J .  I. Legg and B. E. Douglas, J .  Amev. Chem. Soc., 88, 2697 (1966). 
(24) A. J. McCaffery, S. F. Mason, and B. J. Norman, J .  Chem. Soc. A ,  

(25) C. Lin and B. E. Douglas, Inovg. Chim. Acta, 4, 3 (1970). 

Plenum Press, New York, N. Y., 1969, pp 29-41. 

1304 (1968). 
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to be localized on the metal atom, but their dynamical 
behavior reflects the geometrical disposition of the 
ligand atoms. If the total potential energy function 
representing the interactions between the chromophoric 
electron and the ligand atoms includes a dissymmetric 
part, then optical activity is observed in the transitions 
involving this electron. The space occupied by the 
complex is partitioned into sectors whose boundaries 
are defined by the nodal surfaces of the ligand field 
potential function. The distribution of ligand per- 
turber sites among these sectors then determines the 
overall chirality of the complex and, consequently, the 
signs and magnitudes of the CD bands. The physical 
bases of our model are two-way (in the first-order per- 
turbation terms) or three-way (in the second-order 
perturbation terms) electrostatic interactions between 
two or three nonoverlapping charge distributions, 
respectively. 

In the context of this one-electron model, the con- 
figurational, conformational, and vicinal “effects” are 
related to  our description of the perturber site distribu- 
tion among the sectors. Configurational isomerization 
generally leads to rather large changes in the perturber 
site distribution of a complex, whereas conformational 
changes in the individual chelate rings lead to relatively 
small changes in the spatial distribution of perturber 
sites. In general, therefore, configurational effects 

should be considerably larger than conformational 
effects. Vicinal effects, as defined here, originate with 
the substituents attached to asymmetric ring atoms. 
Their magnitude is partly dependent upon ring confor- 
mation (since a change in ring conformation will in 
general alter the ring substituents, positions in space) 
and partly dependent upon the size and electrical prop- 
erties of the substituent groups. 

Further examination of how configurational, con- 
formational, and vicinal effects can be interpreted on 
the basis of our model will not be given here. The 
primary objective of the present study was to derive 
sector rules for ligand field transitions on a one-electron 
model which displays the symmetry-controlled aspects 
of the dissymmetric metal-ligand interactions and which 
provides an orbital description of the optically active 
electronic transitions within the framework of crystal 
field theory. 
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Appendix 
Examples of Mixed-Sector Rules for Pseudo-Tetragonal Systems 

Y 
t 

I \ 
A-M- A - t X  

R A J  A 

nonplanar chelate rings 
Group Symmetry Perturbation 

MA4 D4h 

Bridging atoms (a )  D2 & ~ [ ( X B Y , T ) R B - ~  f z@(xPa - 
P 

Yj32)Ra-v 
Substituents (y) ce CQ,[Z,R,-~ 1- ( x , ~  - y , ~ )  x 

Y 

Sector rule: z x Q a Q ,  [XBX,&(Xr2 - Y,2)RB-5R,-7 + 
B Y  

X ,  Y,Z@(Xaz - Yp2)RB-7Ry-5] 

2. trans-MA2Ba 
Y 
4 

*>l 

3. c ~ s - M A ~ B ~  
Y 

planar chelate rings 

MAzBz ( C Y )  CZ, (X’) CQa[$(xa - Y a ) R 2  -k 

( X ,  Eh)RU-’] 

Perturbation Group Symmetry 

-_ 
planar chelate rings 
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Group Symmetry Perturbation 

Bridging atoms ( P )  CZ, (X') (Xp  - Yp)Rp-3 + 
(xB yg ) R ~  -11 

Substituents (y) Ca (X') ( X ,  - YY)R,-3 + 
(XyYT)Ry-6 +ZY(Xyz - Yr2)  X 

RY' + -- ( X J ,  -t 4 
1 

Sector rule: CCQ,Q,X~ Y,Z,(X,~ - Y , ~ ) R ~ - ~ R ~ - '  + 
a Y  

C C Q ~ Q , ~ ,  ypz,(xY2 - 
B r  

4. MABI 
Y 

planar chelate rings 
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Transition metal-2-alkynyl complexes react with liquid sulfur dioxide or with SO2 in solution t o  form the corresponding vinyl 

derivatives containing a sultine ring, MC=C(R)S(O)OCHz. Prepared in this manner were Mn(CO)j(C3H~RSO~) (R = H, 
CH3), r-CjH~Fe(CO)z(CaHzRSOz) (R = H, CH3, CsHs), T-C~K~MO(CO)~(C~HZRSOL) (R = H, CH,, CsHj), x-CjHsM~(C0)z- 
[P(OCF,H~)~] (CIH~SOZ), and the bimetallic ~-C~H~M(CO),(C~H~SOZ)CHZM(CO)~(T-C~I-I~) (M = Fe, x = 2; M = Mo, 
x = 3). The infrared and 'H nmr spectra of these compounds are presented and compared with those of the organic sul- 
tines. The manganese and iron complexes MXI(CO)~(C~H~SO~) and .rr-CaHjFe(CO)z(CLHsSOz) lose SOz when heated in wucuo 
or treated with alumina, respectively, and revert to the parent alkynyls. Although 2-alkynyl-S-sulfinates are not accessible 
from the corresponding metal alkynyls and SOz, one representative of this classs, x-C5HjFe(CO)z(SOzCHzC=CCHa), was 
synthesized by reaction of r-C6H6Fe(C0)z- with SOz. followed by addition of BrCHLkCCHJ.  Plausible mechanisms of 
these and related reactions of SO2 are considered. 

Introduction 
Reactions between sulfur dioxide and transition 

metal--2-alkenyl complexes proceed with the formation 
of the corresponding S-sulfinates which often contain a 
rearranged allylic moiety3 (eq 1). In  order to ascertain 
MCHzCH=C(R)(R') + SOz ---f 

MSOzC(R)(R')CH=CHz (1) 

whether a similar rearrangement to give allenylsul- 

(1) Part  XIV: S. E. Jacobson and A. Wojcicki, J .  A n w .  Chem. SOC., 98, 

(2) Based in part on the M.S. thesis submitted by J. E. T. to The Ohio 

(3) F. A. Hartman and A. Wojcicki, I i tovg .  Chint. Acta ,  2, 289 (1968); 

2535 (1971). 

State University, 1968. 

R. L. Downs, Ph.1). Thesis, The Ohio State University, 1968. 

finato complexes occurs with 2-alkynylmetal deriva- 
tives, we examined reactions of the latter with SOZ. 
Preliminary results of these studies have already been 
comm~nica ted ;~  a t  that  time the products were formu- 
lated as possessing an allenyl(oxy)sulfinyl linkage, MS- 
(0)OC(R)=C=CH2. Later, investigations on such 
reactions were extended to other 2-alkynyls by Roustan 
and Charrier,5 who designated the products as allenyl- 
0-sulfinates, MOS(0)C(R)=C=CH2. As our studies 
on these systems expanded in scope, it became evident 

(4) J. E. Thomasson and A. Wojcicki, J .  Amev. Chem. Soc., 90, 2709 
(1968); A. Wojcicki, J. J. Alexander, M. Graziani, J. E. Thomasson, and 
F. A. Hartman, Proceedings of the Symposium on New Aspects of the Chem- 
istry of Metal Carbonyls and Derivatives, Venice, Sept 2-4, 1968, p C6. 

( 5 )  J.-L Koustan and C. Charrier, C. R. Acad. S c i . ,  268, 2113 (1969). 


